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ABSTRACT
Automatic fault detection is a major challenge in many sports. In race walking, refer-
ees visually judge faults according to the rules. Hence, ensuring objectivity and fair-
ness while judging is important. To address this issue, some studies have attempted
to use sensors and machine learning to automatically detect faults. However, there
are problems associated with sensor attachments and equipment such as a high-speed
camera, which conflict with the visual judgement of referees, and the interpretability
of the fault detection models. In this study, we proposed a fault detection system for
non-contact measurement. We used pose estimation and machine learning models
trained based on the judgements of multiple qualified referees to realize fair fault
judgement. We verified them using smartphone videos of normal race walking and
walking with intentional faults in several athletes including the medalist of the Tokyo
Olympics. The validation results show that the proposed system detected faults with
an average accuracy of over 90%. We also revealed that the machine learning model
detects faults according to the rules of race walking. In addition, the intentional
faulty walking movement of the medalist was different from that of university walk-
ers. This finding informs realization of a more general fault detection model. The
code and data are available at https://github.com/SZucchini/racewalk-aijudge.
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1. Introduction

Race walking is one of the long-distance track and field Olympic events, which has
been also studied as biomechanical research [1–3]. There are two rules in race walking:
at least one foot must always be in contact with the ground and the forward knee
must be extended until it is perpendicular to the ground [4]. Violation of the first rule
is called loss of contact (LC) violation and that of the second rule is called bent knee
(BK) violation. The walker who commits these violations will be given a warning and
disqualified after three warnings.

Referees in race walking check such faults visually [4]. Then, the standard of judge-
ment varies depending on the ability of the referees and the type of the competition
(e.g., record meeting or championship). In addition, because referees check several
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walkers at the same time, they may not be able to fully observe all walkers. For spec-
tators who are not familiar with race walking, it is difficult to understand whether
a fault has been committed and to appreciate the sport. Therefore, it is important
to realize objective and fair judgement. It is also necessary to clarify the reasons for
the judgements and devise ways to make it easier for spectators to understand race
walking.

To achieve objective and fair judgements, some approaches detected LC using piezo-
electric sensors on the plantar feet [5] or acceleration sensors attached to the waist and
lower limbs [6, 7]. Another study detected two faults using machine learning [8]. How-
ever, all of these studies used sensors attached to the body, which is not practical
because they may affect the performance of walkers. In addition, some machine learn-
ing methods (e.g., support vector machine [9] used in [8]) may make it difficult to
interpret the reasons for the fault detection and sometimes be in conflict with the
visual judgement of race-walk referees. Other sports use image recognition technology
to solve similar problems. Examples include scoring in rhythmic gymnastics [10] and
figure skating [11] and detecting offsides in soccer [12]. These studies use competition
videos and do not require sensors. Similarly, in judging the race walking competition,
automatic non-contact fault detection from the walking video would contribute to
reducing the burden on referees and improving the objectivity of judgement.

In this study, we propose a fault detection system using smartphone camera video to
realize non-contact and objective fault detection (an overview of the proposed system is
shown in Supplementary Figure 1). This study explores the feasibility of non-contact
fault detection through validation of the proposed system using intentional faulty
walking videos. The system first estimates key points (joint locations) from walking
videos by pose estimation. We used a pose estimation model whose performance was
improved by the fine-tuning technique described below. Next, the input features of
the fault detection model are calculated from the coordinate data estimated by the
pose estimation. Finally, the feature vector is input to the classifier, which outputs
the detection results. A smartphone camera is used to capture video to simplify the
system, which can be used in a wide range of situations such as practice, competition,
and referee training. The effectiveness of the proposed system was verified by inten-
tional faulty walking videos of a university student race walker and a Tokyo Olympics
medalist. The contributions of this study are as follows: (1) to develop the inter-
pretable automatic fault detection system of race walking using machine learning with
non-contact measurement; (2) to improve pose estimation performance by fine-tuning
the pre-trained model using images of race walking; (3) to clarify that the system can
detect the fault of university race walkers with high accuracy; and (4) to clarify that
an Olympic race walker and university race walkers had different movements during
intentional faulty walking.

2. Materials and Methods

2.1. Experiment

2.1.1. Participants

In this study, the participants were one 25-year-old Tokyo Olympics medalist (walker
A) with 11 years of experience and a personal best of 38′57”37 in the 10,000 m walk
and four university track and field athletes (21±0.8 years old; walkers B, C, D, and E)
with 5.5±0.5 years of experience and a personal best of 47′20”37±1′19”55 in the 10,000
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m walk. The participants were fully informed about the study and their consent was
obtained in advance. All the experimental procedures were performed after obtaining
prior approval for “Experiments on Human Subjects” from the Graduate School of
Informatics, Nagoya University.

2.1.2. Procedures

The experiment was conducted at the Nagoya University track and field ground (under
the conditions shown in Supplementary Figure 2). The walking section was approx-
imately 20 m long, and we captured the side profiles of the participants during the
experiment. The participants walked repeatedly with breaks in between. The partic-
ipants were instructed to randomly walk with a normal form, a BK, and LC. Since
walker E could not walk with a BK, he was instructed to walk with the normal form
and LC. The other participants frequently walked with a BK. The experiment was
conducted over multiple dates to ensure that fatigue did not affect the walk.

2.1.3. Data Collection

Walking videos were captured by an iPhone 11 Pro camera at 60 fps. After capturing
the video, we asked three referees (One person has an International Race Walking
Judge qualification, the other two have a Japan Race Walking Judge qualification)
to judge whether faults were committed during the experiments by the participants.
We annotated the videos according to the majority vote of the three referees. The
judgement results were used as the correct labels when training the machine learning
model. We captured 268 normal walking videos, 265 BK videos, and 268 LC videos.
The number of videos and valid data by walker are shown in Supplementary Table 1.

2.2. Proposed System

An overview of the proposed system is shown in Supplementary Figure 1. The code
and data are available at https://github.com/SZucchini/racewalk-aijudge.

2.2.1. Pose Estimation

There are two types of pose estimation models: a top-down model that estimates the
key points separately after estimating the positions of all persons in the image, and a
bottom-up model that estimates all key points in the image and then groups them for
each person. In this study, we used HigherHRNet [13], a bottom-up pose estimation
model. The performance of the bottom-up model is superior to that of the top-down
model in multiple-person estimation. Since the proposed system is meant to be ap-
plied to racing, the performance of multi-person estimation is important. Our system
estimates 17 key points: nose, left and right eyes, ears, shoulders, elbows, wrists, hips,
knees, and ankles. The input feature for the fault detection model is computed from
pose estimation data, indicating that the performance of the pose estimation model af-
fects the accuracy of the system. Therefore, we fine-tuned a pre-trained HigherHRNet
model by race walking images to improve estimation performance.

2.2.2. Fine-tuning of the Pose Estimation Model

Fine-tuning is a learning method in which a model is transferred to another domain
by updating the weights of a pre-trained model using other training data. In track and
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field pose estimation, fine-tuning has been used to improve the estimation performance
of long jump and triple jump movements [14]. We fine-tuned a pre-trained HigherHR-
Net based on common human pose images using race walking images to improve its
estimation performance for walking movement. We adopted fine-tuning to reduce the
cost of annotating images, aiming for a simpler system that can be used by a large
number of people.

2.2.3. Post-processing of Pose Estimation Data

The key point coordinate data obtained by pose estimation must be corrected for the
effects of differences in the walker’s physique. Therefore, all data were normalized so
that the length from the nose to the hip key point was 1. In addition, all points were
translated so that the coordinates of the nose were set to (0, 0).

Next, the key point coordinates of the shank and the knee angle were calculated
from the key point coordinates of the hip, knee, and ankle. The shank position was
defined as the midpoint of the knee and ankle, and the knee angle was defined as
θ counterclockwise from the thigh to the calf. After the knee angle was calculated,
outliers were identified based on the standard deviation of the frame-to-frame change
in the right knee angle for all data, and the outlier data were removed.

After removing the outlier data, we extracted the interval of “two steps from the
most bent right knee” from each data set to unify the walking scene of the input data.
The definition of the knee angle and an example of a walking scene are shown in Sup-
plementary Figure 3. The number of frames for all walking data was normalized into
85 frames by interpolation to clarify the frames that contribute to the fault detection.

2.2.4. Classifier

A logistic regression model was used as the classifier for fault detection. The logistic
regression model is one of the simplest machine learning models, and it can analyze
the detection criteria from feature importance based on the standard regression coef-
ficients. Since it is undesirable not to understand the process of judging sports, we use
the model that allows analysis of judging criteria. The detection model was created
separately for two faults (BK and LC). The model takes the key points coordinates
and knee angles as input, and outputs the results of the fault detection.

2.3. System Verification

2.3.1. Pose Estimation Model

Some walking images extracted from the collected videos were used to fine-tune the
pose estimation model. The walking images were annotated by the COCO Annotator
[15]. We used 108 images of walkers A, D, and E as training data, 25 images of walker
B as validation data, and 52 images of walker C as test data. We used MMPose [16],
an open-source framework for pose estimation, for the fine-tuning.

The average Precision (AP) and time-series changes in knee angle were used to eval-
uate the pose estimation models. Representative pose estimation and object detection
models, including the HigherHRNet used in this study, such as Openpose [17] and De-
tectron2 [18], use AP for evaluation. AP is calculated from object keypoint similarity
(OKS), which represents the degree of proximity between the correct and estimated
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points at each key point. OKS is defined by the following equation:

OKS =

∑
i exp(−d2

i /2s
2k2

i )δ(vi > 0)∑
i δ(vi > 0)

, (1)

where di is the Euclidean distance between the detected keypoint and the correspond-
ing ground truth, vi is the visibility flag of the ground truth, s is the object scale, and
ki is a per-keypoint constant that controls falloff.

In the AP calculation, a threshold value is defined, and the average precision of all
key points is calculated, assuming that the OKS of key point i exceeds the threshold
value as the correct answer. For general evaluation, the average value of the AP for each
threshold value is used when the threshold value is changed in 10 steps of 0.05 from
0.50 to 0.95. The time-series variation in the knee angle allows for the identification
of angle outliers. Because outliers are caused by incorrect key point estimation, the
occurrence of incorrect estimation can be visually determined by checking the time-
series variation of the knee angle.

2.3.2. Fault Detection Model

The fault detection model was evaluated by dividing the data by walker and cross-
validating. In this method, the training walker data does not include the test data, thus
the model performance for unknown walkers can be evaluated. We used the accuracy
and F-score to evaluate the model performance. The accuracy is the percentage of the
estimated results that are correct. The F-score is expressed as F-score = (2 × Precision
× Recall) / (Precision + Recall), where the Recall is equal to the true-positive rate,
and the Precision is defined as the ratio of the sum of true positives and true negatives
to false positives. The BK detection model was evaluated using data from walkers A
to D. The LC detection model was evaluated using data from walkers A to E.

To determine why faults were detected, we used the standard regression coefficient
for the logistic regression model as a measure of feature importance. In the analysis of
feature importance by standard regression coefficients, the input features with larger
absolute values of the coefficients contribute more to the detection results. We classified
the input features into nine categories: features related to the x and y coordinates of
the hip, knee, shank, and ankle, and features related to the knee angle. For the analysis
of the detection reason, we used the average of the absolute values of the standard
regression coefficients of the four (BK detection) or five (LC detection) models created
for cross-validation.

3. Results

3.1. Pose Estimation Performance

First, we show the results of the pose estimation performance. AP increased by 0.031
from 0.961 to 0.992 before and after fine-tuning. Figure 1 compares the time-series
change in the right knee angle of all data by the pose estimation model. These results
reveal that outliers in the angle are reduced in the estimation using HigherHRNet
(Fine-tuning), indicating that the fine-tuning improves the estimation performance.
The application of outlier removal also smoothes out the angle changes. We also show
the time-series change in the right knee angle of the test data by the estimation model
in Supplementary Figure 4.

5



3.2. Fault Detection Model Performance

Table 1 shows the results of the fault detection performance for the input data gener-
ated from the HigherHRNet (fine-tuning). The average accuracy was over 90%. How-
ever, the detection of faults in the video of walker A tended to be lower than that of
the other walkers. The LC detection result for walker A was worse than the BK result.

Table 1. Fault detection model evaluation for each walker and fault.

Bent Knee Loss of Contact
Accuracy F-score Accuracy F-score

A 0.850 0.893 0.700 0.727
B 0.966 0.961 0.960 0.959
C 0.915 0.905 0.967 0.967
D 0.972 0.966 1.000 1.000
E - - 0.969 0.969

4. Discussion

In this study, a system for detecting faults from walking videos was constructed for the
purpose of realizing non-contact fault judgement in race walking. Here, we first discuss
the results of fine-tuning the pose estimation model and then analyze the feature
importance of the model to clarify the reason for fault detection. We also discuss the
causes of the poor fault detection performance for the movements of walker A. In
addition, we discuss the movement differences between the training and test data may
cause failure of fault detection. Finally, we discuss the future potential and challenges
of our system.

Typical pose estimation models are trained on large amounts of data, such as the
COCO dataset [19]. In this study, we were able to improve the performance of a
pre-trained model by fine-tuning it with approximately 100 race walking images. The
training was successful even with a small amount of data because the race walking
movement consists of repetitions of specific periodic movements. In this sense, this
method may also be effective for running and sprinting.

We show the feature importance of the BK detection model in Figure 2(a). This
figure reveals that the knee angle is of utmost importance in BK detection. Next, we
analyzed the importance by frame of the input feature of knee angle. Figures 2(b) and

Figure 1. Comparison of time-series changes in the right knee angle to all data. (a) Knee angles calculated

from pre-trained HigherHRNet results; (b) knee angles calculated from fine-tuned HigherHRNet results; and

(c) knee angles calculated from fine-tuned HigherHRNet results with SD-based outlier elimination
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Figure 2. Feature importance analysis of BK. (a) Feature importance of the BK detection model. (b)–(c)
Knee angle’s frame importance of the BK detection model. (d)–(e) Comparison of time series changes in the

knee angle between normal and BK walking (The frames with relatively high feature importance are shown in
light blue).

2(c) show the average importance for each of the five frames for the left and right knee
angles. Frames 0–9, 35–49, and 75–84 had high importance for the left knee angle,
while frames 15–24 and 55–69 had high importance for the right knee angle. From
the above results, the BK detection of the model was considered to be based on the
knee angle in specific frames. Figures 2(d)–2(e) shows the average time-series change
in knee angle for all walkers during normal walking and BK walking. The frames with
high feature importance indicate the pose from when the front foot touches the ground
until it becomes vertical. In BK walking, the knee at this time is more bent than in
normal walking. An example image of the pose is shown in Supplementary Figure 6(a).
Therefore, the BK detection of the model would follow the rules of race walking (e.g.,
the timing and the knee angle).
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In LC detection, the importance of the input features is shown in Supplementary
Figure 5(a), which shows that the importance of the y-coordinate of each key points
is high for LC detection. The importance of the knee angle is also relatively high,
but this will be discussed later. Next, we analyzed the feature importance of the
knee key point’s y-coordinate by frame, which is one of the most important features.
Supplementary Figures 5(b) and 5(c) show the average importance for each of the
five frames for the left and right knee key point’s y-coordinate. There is no significant
difference in importance between frames for the left side, while frames 45–49 and 70–74
are more important for the right side.

From the above results, we considered that the LC detection model focuses on the
y-coordinate of each key point to detect the LC. Supplementary Figure 5(e) shows
the average time-series change in the y-coordinate of the right knee for all walkers
during normal walking and LC walking. In the important frames, especially in frames
45–49, the knee position is higher in LC walking than in normal walking. The left knee
y-coordinate shown in Supplementary Figure 5(d) also differed between normal and
LC walking. In the relevant frames, the walker is swinging his feet forward, a situation
where both feet may be off the ground. An example image of the pose is shown in
Supplementary Figure 6(b). Therefore, the LC detection of the model would follow
the rules of race walking (e.g., the timing and the height of each joint).

The model could not detect LC in the movements of walker A well. Moreover,
the knee angle, which according to the rules should not be the focus of attention
during LC detection, became more important. We determined cause of these results
by comparing the movements of walker A and other walkers. First, to clarify the
features of the detection model of walker A (an Olympian), we compared the feature
importance of the detection model of walker A (the model trained on data other than
walker A’s) with the average feature importance of the detection models of the other
walkers. Figure 3(a)(b) shows that the feature importance of the knee angle was the
fifth highest in the detection model for all walkers except walker A, while that for
walker A was the second-highest in the detection model. These results suggest that
there is a difference in knee angle between normal and LC walking in the training data
of the detection model of walker A (data of walkers other than walker A), whereas
there is no difference in the data of walker A.

To clarify a difference in the knee angle between walker A and the other walkers,
we analyzed the average time-series change in the left knee angle of walkers A and B.
Figures 3(c)(d) show that there was almost no difference in the knee angle between
normal and LC walking for walker A, but there was a difference between normal and
LC walking for walker B. Walker B rolled up his hind leg during LC walking, and as a
result, his knee was bent more than in normal walking. Walkers C through E showed
the same tendency as walker B. These results indicate that walkers B to E tended to
roll up their hind legs when they intentionally walked in LC walking, while walker A
did not. This difference may explain why the detection model of walker A could not
use the features that were focused on during the learning process, and the detection
of faults in the movements of walker A was poor. Differences in the ability to control
walking movements based on athletic experience and athletic ability might affect the
differences in leg roll-up movements during intentional faulty walking.

In detecting the faults in the movements of walker A, the features in the training
data did not match the rules, resulting in poor performance. In this case, even if both
feet were off the ground, the model could failure to detect LC when walkers do not
roll up their legs. In other words, the model may have select the features that do not
match the rules. We also need to take care to avoid bias in training data when building
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Figure 3. Comparison of walker A and other walkers in LC. (a) Feature importance comparison of the

detection models for walker A and other walkers (we removed boxplots because of the comparison). (b)–(c)Left
knee angle of walker A and walker B

a fault detection model using machine learning. In addition, additional validation with
large-scale data is necessary to clarify what kind of data is needed to create a more
general detection model and accurate detection criteria.

In conclusion, the fault detection system proposed in this study achieved highly
accurate non-contact fault detection under the constraint of using intentional faulty
walking video data. We also showed that the reason for the detection of a fault can be
analyzed by feature importance analysis of the machine learning model. If a system
is created by collecting faulty walking videos during a race, a judgement assistance
system for a single walker could be relatively easy to implement. On the other hand,
applying the system to a race is more difficult because it is necessary to improve
the performance of pose estimation for multiple persons and to solve the problem of
occlusion between persons. To realize a system that can be used in races, the following
issues must be addressed: (1) to collect as many natural faulty walking videos as
possible, (2) to verify the versatility of the system using the collected videos, and (3)
to achieve high-performance pose estimation for multiple persons.
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A. Supplementary Figures

Figure 1. Overview of the proposed system

As illustrated in Supplementary Figure 1, the proposed system consists of
video input, pose estimation, data post-processing, and a classifier (judgment
model).

Figure 2. Video collection experimental environment

The experimental setup is illustrated in Supplementary Figure 2. We used
iPhone 11 Pro to take videos. The participants’ walking section was about 30
meters and the recording section was about 12 meters. The walking pace was
instructed by their own race pace.
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Figure 3. The definition of the knee angle and the sequential images of the walking scene

As shown in Supplementary Figure 3, the walking scene in the input data is
a two-step walking motion. The definition of knee angle is shown in θ.

Figure 4. Comparison of time-series changes in right knee angle to test data

In the pre-trained HigherHRNet, the failure of the pose estimation results in
outliers in the angle change. On the other hand, the fine-tuned HigherHRNet
does not have those outliers.
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Figure 5. Judgment grounds analysis of LC

Figure 5(a) is the feature importance of LC judgment model. Figure 5(b) and
Figure 5(c) are the Knee Y-coordinates frame importance of LC judgment model.
Figure 5(d) and Figure 5(e) are the comparison of time series changes in knee
Y-coordinate between normal and LC walking. The frames with relatively high
feature importance are shown in light blue.
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Figure 6. The pose examples of the important frame

Figure 6(a) shows the pose of the important frame in the BK detection. Figure
6(b) shows the pose of the important frame in the LC detection.
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B. Supplementary Table

Table 1. Number of data (valid data / videos)

Normal BK LC
A 31/20 9/20 20/20
B 60/63 94/84 56/63
C 60/60 77/81 64/60
D 40/61 69/80 55/60
E 64/64 0/0 65/65

Table 1 shows the number of videos and valid data. They are different due to
failures in pose estimation and differences between the instructions at the time
of walking and the judgments of the referees.
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